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= Goal — convince you

* There is still interesting Computational Geometry
work for generating separate-yet-dense point sets

— Delaunay Refinement (DR) doesn’t solve everything
* Poisson-disk output has some advantages

— Graphics cares

— Fracture mechanics cares
* Even though slower than deterministic DR
- Slightly different than sphere packings
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3 <o’ Outline

« Maximal Poisson-Disk Sampling (MPS) — what is it, why do we care
— Graphics apps
— Simulations

* Our prior results for MPS points, Voronoi and Delaunay meshes

— Sites may encroach on boundary, not dual of a body-fitted
tetrahedralization

» Spatially varying radii
— Lipschitz conditions
* Motivation: MPS spectrum vs. blue noise
* Two-radii MPS definition
— Random refinements
 MPS output vs. Delaunay Refinement (DR)

— PSA Spectrum
— Angle spectra vs. DR, Edge length vs. DR
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Maximal Poisson-Disk Sampling

* What is MPS?
— Dart-throwing
— Insert random points into a domain, build set X

Empty disk:

Bias-free:

Maximal:

* With the “Poisson” process
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MPS a.k.a.

- Statistical processes  Random sphere packing
— Hard-core Strauss disc processes — r/2-disks non-overlap

* Non-overlap: inhibition distance r .
p- it . ! — MPS = random sequential
- cover domain: disc radius r, )
adsorption

* Geostatistics focus is inverse problem _ o
— Given satellite pictures (non-maximal dist, C(msm liquid, crystal)

 How many trees are there? J U U @ C
* How much lumber? D@@

— Trees in a forest

+ Points are trunks
% Disks are canopy or [l

HE 2o ¢ separation distance [l
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e 4 'Motivation from old-school

Static Graphics

 Stippling: images from dots, as newsprint
(results from this paper)
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otivating from Modern Graphics:
(Brush) Stroke-Based Rendering

» CG artistic effect to mimic physical media
* Images from Aaron Hertzmann, Stroke-Based Rendering

Source photo Painted version Final rendering

Definition: A stroke is a data structure that can be rendered in the image plane.
A stroke model is a parametric description of strokes, so that different parameter
settings produce different stroke positions and appearances.

For example, one form of stippling uses a very simple stroke model: 7?::;\\\ Vg 7 7:?? ///:Q \\\\ |' II‘/ ////::\\\\
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Stippling stroke model Individual strokes (stipples) |———r /7 | \ \S~— F=—~"//]|\\ \: ]

Vector field Final rendering
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o mvating from Modern Graphics:

Texture Synthesis

* Real-time environment exploration. Games! Movies!
» Algorithm to create output image from input sample
— Arbitrary size
— Similar to input
— No visible seams, blocks
— No visible, regular repeated patterns

Spaghetti
Li Yi Wei

ex
X%, SIGGRAPH 2011

&~

regular near-regular irregular near-stochastic stochastic
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, What is MPS good for?
- andia cares about Games and Movies? training...

* Physics simulations — why SNL paid for year 1-2 ©
* Voronoi mesh, cell = points closest to a sample

OO\

* Fractures occur on Voronoi cell boundaries [ .
— Mesh variation C material strength variation o

— CVT, regular lattices give unrealistic cracks
*Unbiased sampling gives realistic cracks

- Ensembles of simulations Fracture Simulations
o - . - : - Courtesy of
Domains: non-convex, internal bgst(jndarles Joe Bishop (SNL)
80%
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maximal helps A quality
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Prior Results

Many fast Graphics algorithms that modified the process slightly, or the
termination criteria

First E( n log n) algorithm with provably correct output
— Efficient Maximal Poisson-Disk Sampling, UCDAVIS
Ebeida, Patney, Mitchell, Davidson, Knupp, Owens, UNIVERSITY OF CALIFORNIA
SIGGRAPH 2011
Simpler, less memory, provably correct, .
faster in practice but no run-time proof B
— A Simple Algorithm for Maximal Poison-Disk Sampling in High Dimensions, L fj( VQ
Ebeida, Mitchell, Patney, Davidson, Owens - (JI'JJ '3/7’
Eurographics 2012 inm

Voronoi Meshes

— Sites interior, close to domain boundary are OK, not the dual of a body-fitted Delaunay Mesh

Sy

— Uniform Random Voronoi Meshes
Ebeida, Mitchell
IMR 2011

Delaunay Meshes
— Protect boundary with random balls reflex boundary edge

— Efficient and Good Delaunay Meshes from Random Points
Ebeida, Mitchell, Davidson, Patney, Knupp, Owens
SIAM GD/SPM 2011

X

interior disk centers
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First Contribution

}’

* Uniform, static literature pretty rigorous
— Graphics papers with heuristics for sampling
curved surfaces, non-uniformly
 unknown or unstated Lipschitz criteria,

neighbor datastructures that sometimes blow-up in
practice

* Lipschitz conditions for spatially varying radii

function

— Reasons and proof techniques as in Delaunay
Refinement
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How fast can radii vary?

* If varies slowly
— bounded # neighbors for disk conflict checks <->
bounded-angle DT
* If shrink too fast
— Unbounded # neighbors
— Infinite run-time

— Zero angles in triangulation Sull big OK

“

s AN

e —N

y °® X A\
.o
I

& Vanishing radius,

¢ infinite neighbors
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V\ /
,-o’ Q. How fast can it vary?
A.

Depends how Conflict is defined.
L is Lipschitz constant: f(x)-f(y) < L |x-y|

- Distance Order Full Conflict Edge Edge Sin Angle Max
g % Method Function Independent Coverage Free Min Max Min L
g ” é Prior r(x) no no no 1/1+L) 2/(1—-2L) (1-2L)/2
S B S Current r(y) no no no 1/1+L) 2/(1—-L) (1-1L)/2
5 % O Bigger max (r(x), r(y)) yes no yes 1 2/(1—-2L) (1-2L)/2
ﬁ = .Z Smaller  min (r(x),r(y)) yes yes no 1/1+L) 2/1-L) (1-1L)/2
'Old l
Prior:

new candidate disk center inside an old prior disk

Bigger: Smaller:
small disk center inside big disk center big disk center inside small disk center

Bigger is stricter than

Sphere packing:
. 0 Y2 radius disks overlap
v distance: sum(r(x),r(y))/2

old
Sandia

Current: rll| National
old prior disk center inside a new candidate disk Laboratories




Graphics Quality Criteria

Average radial power
' mof FFT

power

frequency

Point Set Analysis: http://code.google.com/p/psa/ OK, but what about these?

* Graphics papers say they like MPS because
— Small low frequency component

— No big spikes, especially spikes at high frequency
— IMO want truncated white-noise

Unknown: analytic description of the limit distribution for MPS,
Mean location and magnitude, std deviations of peaks?

Anyone know some good spatial statisticians to work with? th
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4 }/ Our Solution
(second contribution)

* Disk coverage radius larger than free radius
R.> R ( > green)
* New disks must cover some unique uncovered area

— Else maximal (limit) distribution would be the same

— Contrast to Hard-core Strauss disc process:
coverage disks are observed, no effect on process

[\ Process:
\‘ g OK céyers some white | New candidate point uniform at random
7 RN (f) Rejected if center inside a small green disk
N ZE - N (c) Accepted if its yellow disk covers some white ¢

Only generate points in an outer approximation
. reject, inside a green disk | to regions satisfying (c) and (f) in the first place.

/ g o }—
/ X
o/

| ‘reject, yellow already covered

o~

J Sandia
‘\ T r“‘ National
/ Laboratories




Two-radii MPS output
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%‘ndom refinements by shrinking radius

Continuously shrink radii

Coverage radius (blue) larger
than inhibition radius (red)

With one radius, get deterministic point placement,
at Voronoi vertex, as classic Delaunay Refinement

With two radii, random placement,
neighborhood of Voronoi vertex: inside green disk-at-u outside red
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A
% Hierarchical by shrinking radius

Discrete steps

(a) t =0.8 end (b) t = 0.6 start (c) t =0.6 end
Simple since continue original algorithm
No noticeable effect on output spectrum
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L ontrast to Delaunay Refinement (DR)

- Direct sizing control

- Disks centered at points, sized at that point
- Never O(n?) — no intermediate triangulation, generate points first
- No concentration at medial axis as DR

- Global Random placement
- Slow vs. local deterministic DR

- Spectrum results for DR depends on target, queue order
Alex Rand experiments in progress
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Spectrum results for DR

* Depends on target, queue order
(Alex Rand experiments in progress)

1=

power

3(|50 540 750
frequency

360
frequency
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;/Qﬁniform MPS vs. DR angles and edges

—— Unbiased MPS Q _| —— Unbiased MPS
< 4 —— Chew's First DR ™ —— Chew's First DR
—— Target Edge DR —- —— Target Edge DR
o o
2 o N o
* x (QV
c c
o |
g o - Z
© © O
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' ' ' | | | © N | | | | | |
10 12 14 16 18 20 0O 10 20 30 40 50 60
Edge Length Ratio (100 bins) Minimum Angle (120 bins)

To do: study and contrast further
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